|
|
Zeile 102: |
Zeile 102: |
| |110 | | |110 |
| | 24,75 | | | 24,75 |
| + | |} |
| | | |
− | }
| |
− |
| |
− | Jahre Preis[$]
| |
− | 0 1
| |
− | 1 1,03
| |
− | 5 1,16
| |
− | 10 1,39
| |
− | 20 1,79
| |
− | 30 2,40
| |
− | 50 4,30
| |
− | 110 24,75
| |
| | | |
| Die 110 hab' ich natürlich extra mit aufgeschrieben, damit klar wird | | Die 110 hab' ich natürlich extra mit aufgeschrieben, damit klar wird |
Zeile 123: |
Zeile 113: |
| diese Preisentwicklung aus der Dow-Jones Indexkurve heraus, so stellt | | diese Preisentwicklung aus der Dow-Jones Indexkurve heraus, so stellt |
| sie sich folgendermaßen dar: | | sie sich folgendermaßen dar: |
| + | |
| + | [[Bild:Langinvest-dji-inflcor.png|Dow Jones Inflationskorrigiert]] |
| + | |
| + | |
| + | Huch, man erkennt ja garnichts mehr... Vielleicht nochmal die beiden |
| + | Kurven im direkten vergleich im logarithmischen Maßstab: |
| + | |
| + | |
| + | [[Bild:Langinvest-dji-comp.png|Dow Jones Vergleich]] |
| + | |
| + | |
| + | Jawohl, der Inflationskorrigierte Schlußstand am 31.12.2005 beträgt |
| + | ganze 450.3 Punkte! Schon nicht mehr ganz so beeindruckend. |
| + | |
| + | ---- |
| + | |
| + | GEWINNCHANCEN |
| + | |
| + | Mit einem 4%-Sparbuch von der Post um die Ecke wären über die 110 |
| + | Jahre aus den 1000 Dollar auch immerhin fast 75000 geworden. nicht |
| + | schlecht, aber die Aktien waren tatsächlich besser. wenn man |
| + | allerdings nicht ganze 110 Jahre Zeit hat, bis man sein [[Geld]] wieder |
| + | braucht, und die Indexentwicklung betrachtet, besonders die |
| + | Inflationskorrigierte, so erkennt man das es durchaus langanhaltende |
| + | Verlustperioden geben kann. Auch solche von mehr als 30 Jahren |
| + | länge... |
| + | |
| + | Rechnet man alle möglichen Investitionen in den [[Dow Jones]] durch und |
| + | schaut, nach wieviel Jahren man wieviel Gewinn bzw. Verlust gemacht |
| + | hat, so ergibt sich nach reinen Indexständen folgendes Bild: |
| + | |
| + | [[Bild:Langinvest-gewinn.png|Gewinnchance]] |
| + | |
| + | Die Grafik ist folgendermaßen zu lesen: Die Farbe eines Feldes gibt |
| + | die Wahrscheinlichkeit an, daß der Gewinn bzw. Verlust nach |
| + | soundsoviel Jahren (wo das Feld halt liegt) über oder unter der an der linken |
| + | Achse angegebenen Schwelle liegt. So erkennt man beispielsweise, daß |
| + | man nach ungefähr 25 Jahren ziemlich (aber doch nicht 100%ig) sicher |
| + | irgendeinen Gewinn (>0), aber nur mit ca. 66% Wahrscheinlichkeit mehr |
| + | als 100% Gewinn, also eine Kapitalverdopplung erzielt hat. Eine |
| + | verelf-fachung des Kapitals wäre damit selbst nach 40 Jahren |
| + | Investitionsdauer nur in jedem 4. Fall zu erwarten. Auch |
| + | bemerkenswert ist, daß bis zu 20 Jahren Investitionsdauer eine |
| + | durchaus nicht vernachlässigbare Chance auf einen Verlust besteht. |
| + | Und es kommt, wie es kommen mußte, wendet man diese Berechnung auf die |
| + | Inflationskorrigierte Kurve an, so wird das Bild noch trüber: |
| + | |
| + | [[Bild:Langinvest-gewinn_infcor.png|Gewinnchance Inflationskorrigiert]] |
| + | |
| + | Jetzt muß man mindestens 40 Jahre investieren um wenigstens zu 90% |
| + | sicher überhaupt einen Gewinn zu erzielen. Gewinne von über 100% |
| + | werden nur noch jedem zweiten Investor zuteil, hat man weniger als 40 |
| + | Jahre Zeit, verringern sich die Chance auf einen derartigen Ertrag |
| + | schnell auf 25% und weniger. Sicher, das ist besser als Lotto, aber |
| + | vom Lotto macht man ja auch vernünftigerweise nicht seine |
| + | [[Altersvorsorge]] abhängig. hier sieht man auch, das real bei |
| + | Haltezeiten um die 20 Jahre eine durchaus 10%ige Chance besteht mehr |
| + | als die Hälfte seiner investierten Kaufkraft zu verlieren! Und das 4% |
| + | Postsparbuch steht mit seinem 50% real-Ertrag (also nach [[Inflation]]!) |
| + | nach 40 Jahren genausogut da wie knapp die Hälfte aller Aktiendepots! |
| + | |
| + | ---- |
| + | KRITIK |
| + | |
| + | Es gibt zu den obigen Betrachtungen natürlich ein paar Anmerkungen zu |
| + | machen: Die allererste betrifft die Verwendung des Begriffes |
| + | "Wahrscheinlichkeit". Streng genommen darf man den begriff nicht |
| + | benutzen, denn es wird hier letztlich nur das Ergebnis einer Zählung |
| + | vergangener Ereignisse vorgestellt. Zwar sind recht viele Ereignisse |
| + | berücksichtigt, damit diese aber tatsächlich eine |
| + | Wahrscheinlichkeitsverteilung repräsentieren müßte der |
| + | zugrundeliegende Prozess einer bestimmten Verteilungsfunktion |
| + | folge. Für Aktienkursentwicklungen ist jedoch weder eine solche |
| + | Verteilung bekannt, noch weiß man ob ihnen überhaupt eine zugrunde |
| + | liegt. Mandelbrodt und Mitarbeiter haben zwar eine Verteilung |
| + | angegeben die alle von Ihnen überprüften Kurshistorien reproduzieren |
| + | konnte, aber meines Wissens wurde diese Verteilung trotzdem nie als |
| + | wirklich allgemeingültig bestätigt. Außerdem wurde sie rein empirisch |
| + | abgeleitet und ist deshalb aus theoretischer Sicht nicht |
| + | nachvollziehbar. Ob die Farben in den Grafiken wirklich |
| + | "Wahrscheinlichkeiten" darstellen, muß also auch hier, wie beim |
| + | Bankberater, dahingestellt bleiben. |
| + | |
| + | Zweitens gibt es sicher andere Ansätze als "Buy & Hold", mit denen |
| + | sich am Aktienmarkt mehr [[Geld]] verdienen läßt. Über die Jahre verteilt |
| + | kaufen, besserer Aktien/Branchenmix etc. Allerdings muß man dazu |
| + | sagen, daß viele Fondsgesellschaften genau das versuchen: Den Index |
| + | "outzuperformen" (gräßliche Wortschöpfung). Wer einen Fond weiß, der |
| + | das über Zeiträume von 40 Jahren und länger konsistent geschafft hat, |
| + | der möge sich bitte melden.... |
Aktien und die Inflation - oder: Warum "Buy&Hold" auf lange Sicht nichts bringt!
EINLEITUNG:
Wenn der freundlich lächelnde Bankberater die Grafiken mit den
beeindruckenden Wertentwicklungen diverser Aktiendepots über die
letzten 15, 20 oder 30 Jahre wieder beiseite gelegt hat, fragt man sich
oft, wie man nur so dumm sein konnte seine kümmerlichen Geldreserven
bisher auf dem Postsparbuch oder ähnlichen Instrumenten gelagert zu
haben. Er erwähnt zwar pflichtgemäß am Anfang und Ende seines
Vortrages das "Ergebnisse aus der Vergangenheit keine Garantien für
zukünftige Entwicklungen" sind, und Aktien scheinen auch irgendwie
"risikobehaftet" zu sein, aber so recht glauben kann man es beim
Anblick der grün unterlegten "Equity-Kurven" eher nicht....
Könnte es aber vielleicht sein, das die Ergebnisse, welche der Berater
der ertragshungrigen Kundschaft präsentiert noch viel weniger
repräsentativ für die durchschnittliche Wertentwicklung von
Aktiendepots sind, als die Vergangenheit insgesamt? Vielleicht sind
einfach die letzten 30 Jahre besonders gut gelaufen? Hat man nicht im
Geschichtsunterricht mal was von der Tulpenblase im Jahre Schnee
gehört...? Was, wenn man die Wertentwicklung von Aktien bis ins
17. Jahrhundert zurückverfolgen könnte? Kann man, ist aber nicht so
einfach! Was aber recht einfach auf einen längeren Zeitraum
ausgedehnt werden kann, ist die Betrachtung des ältesten Aktienindexes
der Welt, des DOW JONES.
DER DOW-JONES INDEX
Dieser Index wird seit Mai 1896 berechnet, mit im wesentlichen nur
kurzen Unterbrechungen zu Beginn des ersten Weltkrieges und im
September 2001. Zwar umfaßt der Index nur 30 Aktientitel, und es ist
auch nur noch eine einzige der Originalaktien enthalten (General
Electric), aber er spiegelt trotzdem gut die Entwicklung des
amerikanischen Aktienmarktes der letzten 112 Jahre wieder. Schauen
wir uns die Entwicklung der Monatsschlußkurse des Indexes von 1896 bis 2005 an:
Beeindruckend oder? Der erste Monatsschluß im Mai 1896 lag bei 40.62
Punkten, der Höchststand bekanntermaßen bei knapp 14000 Punkten! wenn
das keine "Performance" ist. Versetzen wir uns also in die Lage eines
amerikanischen Kleinsparers (für den es hier keine Wechselkursrisiken
oder so gibt, für die späteren Kritiker), der im Mai 1896 beschließt
für 1000 Dollar Indexaktien zu kaufen (Zertifikate gab's damals wohl
noch nicht). Er, sein Sohn und sein Enkel bilden seither den Index
immer getreulich nach, und der Enkel kann sich also Ende Dezember
2005, als er beschließt das Depot aufzulösen, über 266023 Dollar freuen.
Nicht schlecht, oder? Aber was kann der Enkel im Jahre 2005 denn für
die über eine Viertelmillion kaufen? Reicht gerade so für ein nettes
Häuschen... nach immerhin über hundert Jahren sparen vielleicht nicht
ganz so beeindruckend, zumal das Einstiegskapital von 1000 Dollar im
Jahre 1896 nicht gerade ein Pappenstiel war...
DIE INFLATION
Die mittlere Inflationsrate in den USA betrug von 1896 bis 2005 2.96%
p.a. Typische Rate für eine gesunde Volkswirtschaft, würde man sagen.
Die genauen Werte schwanken zischen leichter Deflation (-2.09% im
Jahre 1909) und über 20% im Jahre 1917. Übrigens verwende ich hier
den Konsumgüter-Preisindex, also dasjenige Maß welches für den
Privatanleger am ehesten ausschlaggebend ist. Die gesamte Datenreihe
kann man sich z.b. bei www.measuringworth.com herunterladen, aber auch
beim "Department of Labor", welches den "cpi" berechnet. Da
vielleicht nicht alle AB-Leser die Zinseszinsrechnung locker im Kopf
beherrschen, hier eine kleine Tabelle, welche Preisanstiege ein knapp
3%-ige Inflation über die Jahre bewirkt. Was am Anfang einen Dollar
kostet, kostet nach X Jahren:
Jahre
|
Preis [$]
|
0
|
1
|
1
|
1,03
|
5
|
1,16
|
10
|
1,39
|
20
|
1,79
|
30
|
3,20
|
50
|
4,30
|
110
|
24,75
|
Die 110 hab' ich natürlich extra mit aufgeschrieben, damit klar wird
das der Opa für seinen 1000er 1896 vielleicht das neueste, mit allen
technischen Finessen ausgestattete Automobil hätte kaufen können, sowas aber eben
heutzutage eher 25000 Dollar kostet. Kann man also für den Reingewinn
aus dem Depot heute gerade mal 10 Autos kaufen gegenüber einem am
Beginn der immerhin 110-jährigen Investitionsperiode. Rechnet man
diese Preisentwicklung aus der Dow-Jones Indexkurve heraus, so stellt
sie sich folgendermaßen dar:
Huch, man erkennt ja garnichts mehr... Vielleicht nochmal die beiden
Kurven im direkten vergleich im logarithmischen Maßstab:
Jawohl, der Inflationskorrigierte Schlußstand am 31.12.2005 beträgt
ganze 450.3 Punkte! Schon nicht mehr ganz so beeindruckend.
GEWINNCHANCEN
Mit einem 4%-Sparbuch von der Post um die Ecke wären über die 110
Jahre aus den 1000 Dollar auch immerhin fast 75000 geworden. nicht
schlecht, aber die Aktien waren tatsächlich besser. wenn man
allerdings nicht ganze 110 Jahre Zeit hat, bis man sein Geld wieder
braucht, und die Indexentwicklung betrachtet, besonders die
Inflationskorrigierte, so erkennt man das es durchaus langanhaltende
Verlustperioden geben kann. Auch solche von mehr als 30 Jahren
länge...
Rechnet man alle möglichen Investitionen in den Dow Jones durch und
schaut, nach wieviel Jahren man wieviel Gewinn bzw. Verlust gemacht
hat, so ergibt sich nach reinen Indexständen folgendes Bild:
Die Grafik ist folgendermaßen zu lesen: Die Farbe eines Feldes gibt
die Wahrscheinlichkeit an, daß der Gewinn bzw. Verlust nach
soundsoviel Jahren (wo das Feld halt liegt) über oder unter der an der linken
Achse angegebenen Schwelle liegt. So erkennt man beispielsweise, daß
man nach ungefähr 25 Jahren ziemlich (aber doch nicht 100%ig) sicher
irgendeinen Gewinn (>0), aber nur mit ca. 66% Wahrscheinlichkeit mehr
als 100% Gewinn, also eine Kapitalverdopplung erzielt hat. Eine
verelf-fachung des Kapitals wäre damit selbst nach 40 Jahren
Investitionsdauer nur in jedem 4. Fall zu erwarten. Auch
bemerkenswert ist, daß bis zu 20 Jahren Investitionsdauer eine
durchaus nicht vernachlässigbare Chance auf einen Verlust besteht.
Und es kommt, wie es kommen mußte, wendet man diese Berechnung auf die
Inflationskorrigierte Kurve an, so wird das Bild noch trüber:
Jetzt muß man mindestens 40 Jahre investieren um wenigstens zu 90%
sicher überhaupt einen Gewinn zu erzielen. Gewinne von über 100%
werden nur noch jedem zweiten Investor zuteil, hat man weniger als 40
Jahre Zeit, verringern sich die Chance auf einen derartigen Ertrag
schnell auf 25% und weniger. Sicher, das ist besser als Lotto, aber
vom Lotto macht man ja auch vernünftigerweise nicht seine
Altersvorsorge abhängig. hier sieht man auch, das real bei
Haltezeiten um die 20 Jahre eine durchaus 10%ige Chance besteht mehr
als die Hälfte seiner investierten Kaufkraft zu verlieren! Und das 4%
Postsparbuch steht mit seinem 50% real-Ertrag (also nach Inflation!)
nach 40 Jahren genausogut da wie knapp die Hälfte aller Aktiendepots!
KRITIK
Es gibt zu den obigen Betrachtungen natürlich ein paar Anmerkungen zu
machen: Die allererste betrifft die Verwendung des Begriffes
"Wahrscheinlichkeit". Streng genommen darf man den begriff nicht
benutzen, denn es wird hier letztlich nur das Ergebnis einer Zählung
vergangener Ereignisse vorgestellt. Zwar sind recht viele Ereignisse
berücksichtigt, damit diese aber tatsächlich eine
Wahrscheinlichkeitsverteilung repräsentieren müßte der
zugrundeliegende Prozess einer bestimmten Verteilungsfunktion
folge. Für Aktienkursentwicklungen ist jedoch weder eine solche
Verteilung bekannt, noch weiß man ob ihnen überhaupt eine zugrunde
liegt. Mandelbrodt und Mitarbeiter haben zwar eine Verteilung
angegeben die alle von Ihnen überprüften Kurshistorien reproduzieren
konnte, aber meines Wissens wurde diese Verteilung trotzdem nie als
wirklich allgemeingültig bestätigt. Außerdem wurde sie rein empirisch
abgeleitet und ist deshalb aus theoretischer Sicht nicht
nachvollziehbar. Ob die Farben in den Grafiken wirklich
"Wahrscheinlichkeiten" darstellen, muß also auch hier, wie beim
Bankberater, dahingestellt bleiben.
Zweitens gibt es sicher andere Ansätze als "Buy & Hold", mit denen
sich am Aktienmarkt mehr Geld verdienen läßt. Über die Jahre verteilt
kaufen, besserer Aktien/Branchenmix etc. Allerdings muß man dazu
sagen, daß viele Fondsgesellschaften genau das versuchen: Den Index
"outzuperformen" (gräßliche Wortschöpfung). Wer einen Fond weiß, der
das über Zeiträume von 40 Jahren und länger konsistent geschafft hat,
der möge sich bitte melden....